Explore
Voice RAG Chatbot with ElevenLabs and OpenAI
This workflow implements an intelligent chatbot based on voice interaction, integrating advanced speech synthesis, recognition technologies, and powerful language models. Users can ask questions via voice, and the system can retrieve relevant knowledge from the database in real-time and generate accurate, natural voice responses, significantly enhancing the accuracy and professionalism of voice Q&A. It is suitable for scenarios such as enterprise customer service, virtual shopping assistants, and knowledge base assistants, providing users with a convenient information retrieval experience.
My workflow
This workflow automatically identifies and extracts key parameters from OAuth2 authentication configurations, such as authorization URI, token URI, and audience information, using a powerful AI language model. It incorporates a confidence scoring mechanism to help users assess the reliability of the data. This significantly enhances the efficiency and accuracy of OAuth2 setup, addressing the complexity and error-proneness of manual querying processes. It is suitable for developers, IT operations personnel, and API integration platform managers, optimizing the process of obtaining OAuth2 authentication parameters.
AI Phone Agent with RetellAI
This workflow provides an intelligent phone agent solution that can automatically record and transcribe calls, extract call summaries, and utilize advanced AI technology for knowledge base Q&A. It supports automatic scheduling of customer appointments, streamlining the manual scheduling process and enhancing the efficiency of phone customer service and sales teams. This system can analyze call content in real-time, ensuring that key information is not overlooked, making it suitable for various types of businesses and improving the quality and responsiveness of customer service.
🔍🛠️ Tavily Search & Extract - Template
This workflow integrates Tavily's search and content extraction API with OpenAI's language model to achieve intelligent web information retrieval and content summarization. Users can input a topic in the chat window, and the system automatically filters highly relevant search results and extracts webpage content, ultimately generating a structured summary. This process addresses the issues of information overload and lack of structure found in traditional search methods, making it suitable for various scenarios such as research, business decision-making, and content creation, thereby enhancing the efficiency and quality of information acquisition.
Integrating AI with Open-Meteo API for Enhanced Weather Forecasting
This workflow integrates artificial intelligence with a weather API to provide an intelligent weather inquiry service. Users only need to enter the city name and the number of days for the query in the chat interface, and the system will automatically retrieve the city's latitude and longitude, as well as future weather information, offering accurate weather forecasts. It supports multi-turn dialogue memory, enhancing the user experience. This service is suitable for scenarios such as travel planning, education and training, and intelligent customer service, allowing users to quickly obtain the weather data they need, thereby assisting with daily travel and decision-making.
Local File Monitoring and Intelligent Q&A for Bank Statements Workflow
This workflow achieves intelligent management and querying of bank statements by monitoring the addition, deletion, and modification events within a local folder. It utilizes a vector database to synchronize file content, generating efficient semantic vector embeddings that support natural language interaction, thereby enhancing query accuracy and response speed. Users can quickly locate and understand a large number of financial documents, significantly improving the utilization efficiency of financial data and the querying experience.
Personalized AI Tech Newsletter Using RSS, OpenAI, and Gmail
This workflow automatically fetches RSS news from multiple well-known technology websites, utilizing AI technology for intelligent analysis and summarization of the content. It generates a personalized weekly technology news briefing and sends it to users via email. Through this automated process, users can efficiently filter key information, avoid information overload, and easily stay updated on industry trends. It is suitable for tech enthusiasts, corporate teams, and professionals, enhancing information retrieval efficiency and reading experience.
Paul Graham Article Crawling and Intelligent Q&A Workflow
This workflow primarily implements the automatic crawling of the latest articles from Paul Graham's official website, extracting and vectorizing the content to store it in the Milvus database. Users can quickly query relevant information through an intelligent Q&A system. By leveraging OpenAI's text generation capabilities, the system can provide users with precise answers, significantly enhancing the efficiency and accuracy of information retrieval. It is suitable for various scenarios, including academic research, knowledge base construction, and educational training.
🤖 AI-Powered RAG Chatbot for Your Docs + Google Drive + Gemini + Qdrant
This workflow builds an intelligent chatbot that utilizes retrieval-augmented generation technology to extract information from Google Drive documents, combined with natural language processing for smart Q&A. It supports batch downloading of documents, metadata extraction, and text vectorization storage, enabling efficient semantic search. Operations notifications and manual reviews are implemented through Telegram to ensure data security, making it suitable for scenarios such as enterprise knowledge bases, legal consulting, and customer support, thereby enhancing information retrieval and human-computer interaction efficiency.
Intelligent Document Q&A and Vector Database Management Workflow
This workflow automatically downloads eBooks from Google Drive, splits the text, and generates vectors, which are stored in the Supabase vector database. Users can ask questions in real-time through a chat interface, and the system quickly provides intelligent answers using vector retrieval and question-answering chain technology. Additionally, it supports operations for adding, deleting, modifying, and querying documents, enhancing the flexibility of knowledge base management. This makes it suitable for enterprise knowledge management, educational tutoring, and content extraction needs in research institutions.
API Schema Crawler & Extractor
The API architecture crawling and extraction workflow is an intelligent automation tool that efficiently searches, crawls, and extracts API documentation for specified services. By integrating search engines, web crawlers, and large language models, this workflow not only accurately identifies API operations but also structures the information for storage in Google Sheets. Additionally, it generates customized API architecture JSON files for centralized management and sharing, significantly enhancing development and integration efficiency, and helping users quickly obtain and organize API information.
Create AI-Ready Vector Datasets for LLMs with Bright Data, Gemini & Pinecone
This workflow automates the process of web data scraping, extracting and formatting content, generating high-quality text vector embeddings, and storing them in a vector database, forming a complete data processing loop. By combining efficient data crawling, intelligent content extraction, and vector retrieval technologies, users can quickly build vector datasets suitable for training large language models, enhancing data quality and processing efficiency, and making it applicable to various scenarios such as machine learning, intelligent search, and knowledge management.
AI Document Assistant via Telegram + Supabase
This workflow transforms a Telegram bot into an intelligent document assistant. Users can upload PDF documents via Telegram, and the system automatically parses them to generate semantic vectors, which are stored in a Supabase database for easy intelligent retrieval and Q&A. The bot utilizes a powerful language model to answer complex questions in real-time, supporting rich HTML format output and automatically splitting long replies to ensure clear information presentation. Additionally, it integrates a weather query feature to enhance user experience, making it suitable for personal knowledge management, corporate assistance, educational tutoring, and customer support scenarios.
Automated Document Note Generation and Export Workflow
This workflow automatically extracts new documents, generates intelligent summaries, stores vectors, and produces various formats of documents such as study notes, briefings, and timelines by monitoring a local folder. It supports multiple file formats including PDF, DOCX, and plain text. By integrating advanced AI language models and vector databases, it enhances content understanding and retrieval capabilities, significantly reducing the time required for traditional document organization. This workflow is suitable for scenarios such as academic research, training, content creation, and corporate knowledge management, greatly improving the efficiency of information extraction and utilization.
Intelligent Document Q&A – Vector Retrieval Chat System Based on Google Drive and Pinecone
This workflow primarily implements the automatic downloading of documents from Google Drive, utilizing OpenAI for text processing and vector generation, which are then stored in the Pinecone vector database. Users can quickly ask questions in natural language through a chat interface, and the system will return relevant answers based on vector retrieval. This solution effectively addresses the inefficiencies and inaccuracies of traditional document retrieval, making it widely applicable in scenarios such as corporate knowledge bases, legal, research, and customer service, thereby enhancing the convenience and accuracy of information retrieval.
Easily Compare LLMs Using OpenAI and Google Sheets
This workflow is designed to automate the comparison of different large language models by real-time invoking independent responses from multiple models based on user chat input. It records the results and contextual information into Google Sheets for easy subsequent evaluation and comparison. It supports memory isolation management to ensure accurate context transmission while providing user-friendly templates to facilitate the participation of non-technical personnel in model performance evaluation, thereby enhancing the team's decision-making efficiency and testing accuracy.
AI Agent to Chat with Your Search Console Data Using OpenAI and Postgres
This workflow builds an intelligent AI chat agent that allows users to converse with it in natural language to query and analyze website data from Google Search Console in real time. Leveraging OpenAI's intelligent conversational understanding and the historical memory storage of a Postgres database, users can easily obtain accurate data reports without needing to understand API details. Additionally, the agent can proactively guide users, optimizing the data querying process and enhancing user experience, while supporting multi-turn conversations to simplify data analysis and decision-making processes.